
20172ndInternational Electrical Engineering Conference(IEEC 2017)

May. 19-20, 2017atIEP Centre,Karachi,Pakistan

1

I. INTRODUCTION
The decryption of GSM signals is becoming increasingly

important for defense and security applications.

Moreover, the GSM is used by nearly 4.9 billion people

[1] their privacy is real concern.

Traditionally the decryption is done by highly expensive

hardware and also this process was time consuming as

well as hit rate was very low. First known attack on GSM

was launched back in 2003 [2].

An alternative approach to decrypt GSM signals with the

help of RTL-SDR dongle and by using open source

software has been discussed.

A5/1 is the encryption [3] type which is used commonly

to encrypt the data packages sent our mobile phones.A5/1

is a stream cipher algorithm which uses three LFSR

(Linear Feedback Shift Registers) to encode the data.

II. OUR WORK

Pre-Requisites:

To start GSM sniffing and decoding there were some pre-

requisite hardware and software requirements we needed

to fulfill. The hardware requirements were a personal

computer, a RTL-SDR dongle with antenna, a USB cable

and a mobile phone with active network.The software

requirements were Linux based virtual machine, GR-

GSM, Wire Shark & GNU Radio [4]-[6].

Process:
To start with the process of sniffing it was required to

make a change in the settings of the mobile we are using

i.e. change network setting to ‘only 2G’.

Next step was to identify the downlink channels our

mobile is using to receive data. There were two methods

which we could have used for that, one is the hit and trail

method using software called GQRX, Fig 1 and second

is using a website [7]in which we use the

ARFCN(Absolute Radio Frequency Channel

Number) from our mobile phone to find the downlink

frequency, Fig 2. For further process we required the

access to virtual machine I mentioned earlier. The virtual

machine we used was KALI LINUX 32-BIT. First thing

required after installing and setting up KALI was to

install GQRX. After installation and connecting our

RTL-SDR to the virtual machine, Fig 3 GQRX was used.

We adjusted the frequency in the upper bar and checked

if we can catch any downlink frequencies frequency

which showed in the window below. The darker the color

in the below window the stronger the downlink channel.

Fig. 1 GQRX Method

Fig. 2 Website Method

Sniffing, Decoding and Decryptionof GSM signals using Open Source

Software and Low Cost Hardware
Muhammad Talha Choudary1*,Arish Yaseen1, Muhammad A Javaid1, Abeer R Khan1,

Bilal A Khawaja1, Sajid Saleem1 and Muhammed Mustaqim1
1 Department of Electronics and Power Engineering,PNEC-NUST,

Karachi,Pakistan (* Corresponding author)

(talha.choudhry-ee@pnec.nust.edu.pk*, ssaleem@pnec.nust.edu.pk, mmustaqim@pnec.nust.edu.pk)

Abstract: We report- a software defined platform is used to sniff, decode and decrypt GSM signals. A RTL-SDR [8]

along with GR-GSM and Wireshark is used to decrypt GSM signals. This approach eliminates the need of GPUs and also

provides us decoded GSM signals in real time. In addition, this approach enabling applications in telecommunication to

monitor GSM signals in real time also useful for military purposes. This approach is discussed on the basis of experimental

results.

Keywords: GSM signal, TMSI, KC, GR-GSM, RTL-SDR (Software Defined Radios), A5/1 A5/3 encryption.

mailto:talha.choudhry-ee@pnec.nust.edu.pk*
mailto:ssaleem@pnec.nust.edu.pk
mailto:mmustaqim@pnec.nust.edu.pk
mailto:mmustaqim@pnec.nust.edu.pk

2

Fig. 2.1 Hardware Set up

 The next step was to install the GR-GSM, available on

the internet, on the virtual machine. The easy install

guide was available on the website which we used to

install all the packages required. [6]

 After installation, GR-GSM was used with WireShark

to sniff out GSM data packages from air and decode

them [7]. To do this we opened WireShark and selected

loop back and clicked start. We then entered the

command ‘gr-gsm_Livemon’ which opened the live

monitoring of GSM signals in the air. All we had to do

then was to select the downlink frequency we know and

we started catching data packages which were shown in

WireShark, as shown in fig 3 and 4

Fig 3. GR-GSM sniffing GSM Data

Fig 4. WireShark has showing decoded GSM Data.

The packages caught using this method were of multiple

types and provided different valuable information such as

the area code, the channel used etc.

 For the next step we connected our mobile phone to

the computer and connected it with our virtual machine.

Although our mobile was in MTP (media transfer

protocol) mode, we used ‘lsusb –v|less’ command to get

additional information. In that information it was found

that our device can work as abstract modem and support

AT-commands, which could be used extract the TMSI

and KC [4]. For that a small program called USBswitcher

was used which switches the USB’s (i.e. our mobile)

configuration that allowed us to use the mobile as modem

(using ttyl command). It is very dangerous to play with

the device as modem as we may brake our sim cards but

if we know what command to use specifically we can

extract the TMSI and KC.

 While accessing the modem we usedthe commands

“AT+CRSM=176.28448.0.0.9” to get KC and

“AT+CRSM=176.28543.0.0.1” to get TMSI, Fig 5.

These values of TMSI and KC are temporary and may

change with change in channel or with different type of

data (new call or sms). So after each sms or phone call it

is necessary to check the TMSI and KC to see if they had

changed or remained the same. To decrypt only the first

four characters of TMSI are required whereas we require

the whole KC except the last two characters so we would

remove them.

Fig. 5 KC and TMSI

Decrypt SMS:

Before initializing the sms decryption process it was

made sure that the mobile was working as a modem and

also the current TMSI and KC were extracted and noted

down.

The command of ‘grgsm_capture.py’ was used to

capture the sms package being sent to our mobile. This

command is also required to give additional values with

the command. In those additional value ‘g’ is the gain (or

amplification of the signal), ‘a’ is the channel our mobile

is using, ‘s’ is sample rate, ‘c’ is the destination file where

the data will be saved and ‘T’ is the time period of

sampling in seconds.

 After the file was captured, ‘grgsm_decode’

command was used with WireShark (in loopback mode)

first time without the key to identify the

encryption(whether A5/1 or A5/3), mode and

timeslotused. It is necessary to recheck TMSI and KC as

they may have changed from their previous values. In

WireShark TMSI was used to identify the packages that

were sent to our device. Decode command was used

second time with the key to decrypt the sms we have sent,

Fig 6. Shows The decrypted sms was shown in

WireShark window. ‘grgsm_decode’ command required

‘a’ and ‘s’ are same, ‘c’ is now the source file, ‘m’ is the

mode of communication being used by our mobile (it is

default for all), ‘t’ is the time slot, ‘e’ is the encryption

and ‘k’ is the KC.

Fig. 6 Decrypted sms.

Fig 7 is a flowchart of the whole process to make it

easier to understand (naturally since we can only see the

downlink this shows only what happens on the

downlink):

Fig 7 Flowchart for decryption of SMS

Decrypt call:

To decrypt the call, the method is pretty much the

same as decrypting a sms but there are some limitations.

Similar to the decrypting a sms it was necessary to first

find TMSI and KC, then we used the similar

grgsm_capture command to capture the data packets and

save them into a destination file and then decode that file

using grgsm_decode command. However when we

looked at the packages that were caught, it was found that

‘channel hopping’ was on. Channel Hopping means that

our data was received through multiple channels by

switching between them during the call. So to receive the

whole data package now, it was required to capture data

multiple frequencies. This is where the limitation comes

because RTL SDR [8] can capture the maximum

bandwidth of 2.4 MHz or 3.2 MHz (with probable

package loss). So if the bandwidth of channel hopping

used by our mobile is higher than this it is not possible to

decipher the whole call unless a more powerful device is

used.

Fig. 9 Hopping Channels

However if the Channel Hopping was off it will be

much simpler to decode it and will be almost same as sms

decryption. To do that capture command will be used to

capture data on the particular channel (as channel

hopping is off) and then decode command on the

captured file will be used. First time decode command

will be used without the key to identify the encryption

type, the mode and the time slot. Then we will use the

decode command again with the key and all that

information we got and create an output file with

extension ‘.au.gsm’. This will be the audio file of our call

and that’s how the call will be decrypted, Fig 8.

Flow chart for voice decryption has shown in Fig 9

Fig. 8 Audio file of our Call

Fig 9 Flowchart for voice decryption

III. CONCLUSION

Concluding our work here, we can say that we were

successful in using the RTL-SDR to sniff and decode the

GSM data off the air. However there were some

limitations such as Channel hopping during the phone

calls which caused hindrance in the decoding process.

The software we required were easily available and did

not cause any issues while working. However a sound

knowledge of working in a Linux environment was

required in order get this job done successfully.

3

4

Secondly we also required access to our mobile phone

so we could use is as a modem and extract KC and TMSI.

However, now we are working on creating our on

Rainbow Tables that will allow us to extract KC and

TMSI without the requirement of access to the mobile

phone.

To generate our own Rainbow Tables for A5/1 we will

use a custom built computer with two GPUs (Graphic

Processing Units), one for table generation and second

for doing look up in the table. Once these tables will be

generated we will be able to decipher any data package

with A5/1 encryption without the need to access the

receiving device.

IV. REFERENCES

[1] Definitive data and analysis for the mobile industry

URL: https://www.gsmaintelligence.com/. Last accessed

Dec 11, 2016.

[2] Elad Barkan, Eli Biham, Nathan Keller,

Instant CiphertextOnly Cryptanalysis of GSM

Encrypted Communication, 2003

[3] J. Golic, W. Fumy, "Cryptanalysis of Alleged A5

Stream Cipher" in Advances in Cryptology

EUROCRYPT 1997. LNCS, Heidelberg:Springer, vol.

1233, pp. 239-255, 1997.

[4] Jean-Philippe Lang, Overview of GNU Radio URL:

http://gnuradio.org/redmine/projects/gnuradio

[5] Communications System Toolbox Support Package

for RTL-SDR Radio. User Guide.MathWorks, 2013.

[6]gr-gsm Documents on Github URL:

https://github.com/ptrkrysik/grgsm/tree/master/include/g

rgsm

[7] ARFCN Calculator

URL: https://www.cellmapper.net/arfcn

Last accessed Jan 11, 2017.

[8] R. W. Stewart et al., Software Defined Radio using

the MATLAB & Simulink and the RTL-SDR, Strathclyde

Academic Media, 2015. ISBN-13: 978-0-9929787-1-6.

https://www.gsmaintelligence.com/
https://l.facebook.com/l.php?u=http%3A%2F%2Fgnuradio.org%2Fredmine%2Fprojects%2Fgnuradio&h=ATN3DJ9jX0CR6VvZTeSxRKDqoztY_mt7BnaWgrjGEqMtyk88U9b1_AK7ubPhvbBe1v_oWxGK_efvmA3FywLWCWt-Ps0mysB_RKaia1XFCKqAXiom9R6xzYNtBtF8rJH-YsGr6w8
https://github.com/ptrkrysik/grgsm/tree/master/include/grgsm
https://github.com/ptrkrysik/grgsm/tree/master/include/grgsm
https://www.cellmapper.net/arfcn

